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Two Triads of Squares 

By J. Lagrange and J. Leech 

Abstract. The thirteen points (0,0 ), (? a,, 0), i = 1, 2, 3, (0, + by), j = 1, 2, 3, will be at integer 
distances from one another if the two triads al, a2, a3, bl, b2, b3 are such that the nine 
sums a 2 + b? are all perfect squares. Infinite families of solutions are derived from solutions 
of {m,n}2 = {p,q}{r,s}, where {m,n} = (m2 - n2)/2mn, etc. Additional numerical 
examples are given. Two solutions are given in which one of the triads is extended to a tetrad. 

1. Introduction. Several investigations have been made of sets of points in a plane 
such that all the distances between pairs of them are rational numbers. (For 
references, see [1, Problem D 20]; for a recent survey, see [2].) The rational points on 
a line form an infinite set, and it is also easy to find infinite sets on a circle (for 
example, points with coordinates (cos 40, sin 40), where tan0 ranges over rational 
numbers). Our interest therefore lies in sets of points which do not all lie on one line 
or circle, In particular, we may seek sets of points which maximize the number N 
such that, whatever line or circle we choose, there are at least N of the points of the 
set not on the chosen line or circle. For example, Leech [5] constructs sets of nine 
points of which no line or circle contains more than four, so N = 5 for these sets. In 
this paper, we construct sets of thirteen points of which no line contains more than 
seven and no circle more than four, so N = 6 for these sets. 

The present sets of points comprise the point of intersection of two perpendicular 
lines, which we take as axes of coordinates, together with points (? a1, 0), i = 1, 2, 3, 
and (0, ? b1), j = 1, 2, 3, for integers aj, b1. All their distances will be integers if the 
two triads of squares a,, a , a2 and b , b , b2 are such that the nine sums ai + bJ 

are all perfect squares. These are the triads of the title. To each such pair of triads 
there corresponds a reciprocal pair, obtained by replacing each ai and b1 by the 
quotient on dividing it into the LCM of all the ai and b1. 

To avoid frequent writing of fractions, we use the following notation. Let { m, n } 
designate the fraction (mi2 - n 2)/2mn, and let { m, n }' designate its reciprocal 
2mn/(m2 - n2). (It will always be assumed that mn(m2 - n2) # 0.) Then 
{m, n}{m, n }' = 1, and {m, n }' = {m + n, m-n }. In numerical examples, we 
remove any common factors to ensure that m, n are coprime, and we use the latter 
relation to ensure that they are of opposite parity. 

2. An Infinity of Rational Squares ai + bi, ai + b2 . It is straightforward to 
construct infinite sets of points at rational distances of which four are of the form 
(0, ? b1), (0, ? b2), and the others are (0, 0) and ( ? aj, 0) for i = 1, 2, .. ., with all the 
ai rational [6]. To find one such point (a,, 0) with a, # 0, we have to make a 2 + b 2 
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and a 2 + b2 squares simultaneously. This can be achieved by setting b1/a1 = { p, q) 
and a 1/b2 = { r, s ), so we require b1/b2 = {p, q {r, s ). Writing x/z = p/q and 
y/z = (r + s)/(r - s), we express this as 

(1) blx(y2 - Z2) = b2y(x2 - 2) 

which is a plane cubic curve in the homogeneous coordinates x, y, z. It has eight 
rational points of finite order, namely (1,0,0), (0, 1,0), (0,0, 1), (bl, b2, 0) and the 
four unit points (?1, ?1, 1), which form a closed set. In the special case that 
b~lb2 = { m, n }2, there are eight further rational points of finite order, namely 
x/z = ? m/n or n/rm, each with y/z = (x + z)/(x - z) or (z - x)/(z + x). 
Otherwise, there are no further rational points of finite order. So if we have any ratio 
b1/b2 which is expressible in the form b1/b2 = {p, q){r,s) with {r,s ) {p,q), 
then this corresponds to rational points of infinite order on the cubic curve (1), and 
there are an infinity of points (? ai, 0) at rational distances from (0, ? b1) and 
(0, b2) (and of course from each other). For these infinite sets, we thus have 
N = 4, which seems to be the largest value known for infinite sets. 

3. Solutions of {rm,n)2 = {p,q){r,s). In the special case b {lb2 rmnn)2 
mentioned above, there may be additional representations b1/b2 = { p, q {r, s), 
corresponding to rational points of infinite order on the cubic curve. We develop 
these in some detail as we shall use them in Section 5 to solve our main problem of 
constructing pairs of triads of squares. An infinite family of such ratios are found by 
solving simultaneously the Diophantine equations 42 + q2 = '2 and t 2 - q = p2. 
For any such solution, we have b1/b2 = ,2/,q2 = { ,, p ) { p, a)'. It is another elliptic 
curve problem to solve these equations; solutions are generated by (/'q = {4, 1), 
-{52,17), {3247,1560), -{571663,436440) .... Another infinite family of solutions 
are found by solving simultaneously the Diophantine equations Q + 'q 2 = '2 and 
q2 + (t = p2. For any such solution, we have b1/b2 = 42/q2 = {( + ', p ){ p, )'. It 
is another elliptic curve problem to solve these equations; solutions are generated by 
(/,q = {4, 1)', {17,4), -{76,15)', -{570,353), {4785,2584)', {83777,43384) .... A 
third infinite family of solutions are found by solving simultaneously the Diophan- 
tine equations Q2 + 2 = '2 and q+ + + q = p2. For any such solution, we have 
b~lb2 = Q2/'q2 = {( + , p){ + ,p)'. It is yet another elliptic curve problem to 
solve these equations; solutions are generated by (/'q = -{8,5), {541, 184), 
-{399401,78384) .... Some additional solutions of { m, n )2 = { p, q){ r, s), not of 
these special forms, have been found by a short computer search, described in 
Section 4. 

As solutions correspond to points of infinite order on the cubic curve (1), from 
any one solution we can construct an infinity of others with the same values of m 
and n; these involve integers of rapidly increasing size. Solutions, however, come in 
pairs involving integers of similar size. If a point of infinite order on the curve is 
joined to one of the second set of eight points of finite order, such as x/z = m/n, 
y/z = (x + z)/(x - z) = (m + n)/(m - n), then the third point of intersection of 
this line with the curve corresponds to the other of this pair of solutions. The 
solution paired with { m, n }2 = {p,q){r,s) is 

{m,n}2 = {(mp + nq)(ms + nr),((mq + np)(mr + ns)} 
x {((mp + nq)(mr - ns), (mq + np)(ms - nr)}. 
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4. Numerical Examples of { m, n }2 = { p, q ) { r, s ). The following pairs of solu- 
tions were found by a computer search for solutions { m, n }2 = { p, q ) { r, s )' having 
n < m < 20 and either q < p < 500 or s < r < 500; we include a pair for {15,4)2 

found in an unsystematic extension of this search. 

{4,1}2 = {13,8}{14,1} = {19,8}{22,3}, 

{5,2}2 = {61,54}'{183,160} = {323,106} {682,325}, 

{5,4}2 = {315,296}{494,235} = {527,274}{2200,2047}, 

{8,5}2 = {50,23}{96,73} = {380,341}{515,112} 

= {159,26}'{512,265}= {163,24}{2363,2200} 

= {235,194}{451,160}= {304,101}{1044,875}, 

{9,2}2 = {424,395}'{5760,4187} = {1349,422}{4738,729}, 

{9,8}2 = {65,48}{113,108} = {67,66}{513,224}, 

{13,6}2 = {96,79}{722,553}' = {143,86}{702,229}, 

{14,3}2 = {136,129}'{1161,896} = {294,47}{403,114}, 

{15,4}2 = {596,273}{1700,237} = {722,177}'{3456,295}, 

{15,8}2 = {66,43}{800,327}= {108,95}{464,65}, 

{17,4}2 = {34,15} {152,17} = {296,23} {578,319}. 

The simplest numerical solutions of the first two infinite families given in Section 
3 form the first pair; that of the third family appears as {8,5 )2 = {50,23) {96,73). 
These solutions were given in [3, p. 88], together with the solution {52, 17)2 = 

{3637, 1768) {3026, 611), the second solution of the first family. The second solution 
of the second family appears above; it is {17, 4)2 = {296,23){578,319). 

On the cubic curve for {8, 5)2, the three pairs of solutions correspond to 
independent points of infinite order. We have found no other example with more 
than one independent point of infinite order in this range of search. However, the 
third solution of the second family gives the pair 

{76,15}2 = {3930,209}{4139,2280} = {675,248}{722,71}, 

and we find the further independent pair 

{76,15}2 = {384,125} {7442,5915}' = {9103,380} {23980,14877}. 

Dependent solutions involve proportionately much larger integers. For example, 
from the simplest pair of solutions for {4, 1)2, we deduce the next pair 

{4 1}2 = {2204,825}{10244,1631} = {4976,915}'{18971,1024}. 

In any solution of {m, n )2 = {p,q){r,s), the ratios {p,q), {m,n), {r,s) form 
a geometric progression. Let u/v be its common ratio. Then, the two ratios u/v in a 
pair of solutions are related by {U1, v}{u2, v2) - ( 2 + 12 )/241q, where (/11 = 

{ m, n ) (so 42 + q2 = 22)9 by a straightforward but tedious calculation. This last 
equation (without the requirement that 42 + q2 be square) is the characteristic 
equation for a cuboid which has its three edges, two of its face diagonals and its 
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body diagonal integers ([4, Eq. (4.3)], [1, Problem D 18, Eq. (M)]). Indeed, the 
simplest solution {26, 7}{190, 99) = (152 + 82)/2.15.8 appears in [3] (in Table, p. 
93, see Note 3 to Table), and in [4, Fig. 1] and [1, Problem D 18, Fig. 11]. This 
corresponds to the geometric progressions {13,8}, {4, 1), {14, 1} and {19,8), {4, 1), 
{22, 3) in the simplest pair above. 

The solutions paired with those of the three infinite families of Section 3 do not 
have correspondingly simple expressions for their generators. However, for the 
second family, with q2 + at = p2, the solution paired with 42/q2 = { t + A, p) { p, t)' 
has smaller generators, and the ratio u/v has the simple expression 

U/V =( + 2 (t + P))/(t + 2 ( - P))* 

The simplest examples are {4,1)2 = {13,8){14,1) with u/v = 26/7, and {17,4)2 
= {34, 15) {152, 17) with u/v = 585/266. These are used in Section 5 below. 

5. Two Triads with al/a2 = b1/b2. We now use solutions of {m, n2 = 

{pA, q)}{r, s)} to construct triads a2, bJ2 such that a 2 + bj2 are squares for all nine 
pairs ai, bj. For any a,, a2, bl, b2 with a 2 + bj2 squares, we can find an infinity of 
further rational ai such that a 2 + b 2, a 2 + b 2 are squares, and an infinity of further 
rational bj such that a 2 + bJ, a 2 + bJ are squares. In general, we shall not have 
a 2+ bJ2 square for any i, j > 2, but a certain special assumption enables us to make 
a3 + b 2 square also. Suppose a,, a2, bl, b2 satisfy al/a2 = b1/b2. We write 
a1 = ux, a2 = vx, b, = uy, b2 = Vy; then we require X2 + y2, (UX)2 + (vy)2, (VX)2 
+ (uy)2 to be squares. Setting y/x = { m, n ), vy/ux = { p, q ), uy/vx = { r, s }, we 
satisfy these requirements with solutions of { m, n }2 = { p, q } { r, s }, which have 
been developed in Sections 3 and 4. Suppose now that b3 = wx, so that to make 

2 2 U 2,2 + 2 a 1 + b3, a 2 + b3 squares we have to make u2 + w , v + w squares. We know that 
u/v = { p, q )'{ m, n ) = { m, n )'{ r, s ), corresponding to points of infinite order on 
the cubic curve, so there are an infinity of values b3 = wx, distinct from b, and b2, 
making a 2 + b 2, a2 + b 2 squares. To each such value there corresponds a value 
a3 = wy = b3b1/a, = b3b2/a2 making a 2 + b 2, a2 + b2 a2 + b 2 squares simulta- 3 2 ~~~~3 1 3 2' 3+ sqae 
neously, since a3/b1 = w/u, a3/b2 = w/v and a3/b3 = y/x. We thus have triads 
of squares a 2, bJ2 with all nine sums ai + bJ2 squares, as required. The reciprocal 
pair of triads corresponds to the same values of a1, a2, bl, b2 but with a new value 
of w related to the old by wlw2 = uv. (Rescaling may be needed to ensure integer 
triads.) 

Two solutions of general form are given by 

u/v= p,q-'{m,n)= {m,n)'{r,s) 

= {(mp + nq)(ms + nr), (mq + np)(ms -nr)' 

x {(mp + nq)(mr - ns), (mp - nq)(ms - nr)) 

= {(mp + nq)(mr - ns), (mq + np)(mr + ns))' 
x {(mp - nq)(mr + ns), (mp + nq)(ms + nr)). 

In the simplest numerical examples, these give 

26/7 = {13,8)'{4,1) = {4,1)'{14,1) 

= {12,5}'{15,2) = {220,171)'{209,90) 
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and 

190/99 = {19,8}'{4,1} = {4,1}'{22,3} 

= {28,5}'{21,2} = {20,13}'{13,6}, 

and lead to the following reciprocal pairs of solutions to our original problem: 

952 3536 1800, 1785 6630 960, 
23400 6300 12376, 12480 3360 23205; 

153272 569296 1128600, 287385 1067430 601920, 
14671800 3950100 1992536, 7824960 2106720 3736005; 

5544 10640 23400, 10395 19950 12480, 
148200 77220 35112, 79040 41184 65835; 
18216 34960 12600, 34155 65550 6720, 
79800 41580 115368, 42560 22176 216315. 

The first solution above is the smallest of any we have found. Some further 
solutions of this type, not given by these general expressions, have been found by a 
short computer search. This examined ratios u/v = { p, q }'{ m, n } = { m, n }'{ r, s }, 
found as above, for further representations u/v = { c, d } { e, f } in small integers. 
One of these is of unusual simplicity. From {17,4}2= {34,15){152,17) we find 
u/v = 585/266 = {34,15}'{17,4} = {17,4}'{152,17) = {4,1}{13,6}', giving u = 

585, v = 266, w = 312, and the triads 

159705 72618 42432, 79560 36176 85176. 
This is the simplest such solution we have found for which y/x # 15/8 (instead, we 
have u/w = 15/8). 

6. Two Triads, General Case. The foregoing solutions are based on the special 
assumption al/a2 = bl/b2. It is natural to enquire whether there are solutions not 
of this special form. Here we have no general theory or formulae, but numerical 
examples have been found by computer searches which indicate that they are not 
infrequent. The following search method was adopted. Since we require a2/a, = 

(a2/bj)(bj1/a) for j = 1,2,3, we look for ratios a2/a, which have several represen- 
tations as products a2/a, = { p, q }{ r, s in comparatively small integers. A favora- 

ble example is 

25/91 = {3,2}{10,3}'= {4,3}'{13,12} = {8,5}'{8,7} 
= {11,4}{44,5}' = {14,9}{18,5}' = {19,2}'{38,13}, 

which we use to illustrate the method. We choose one of these representations; in 
this example, 25/91 = {8, 5}'{8, 7) is successful. Combining this representation with 
the others, we find several ratios h/k which have representations of the forms 
h/k = {8,5}{pq} = {8,7}{r,s}. Among these are 5/128 = {8,5}{13,12} = 

{8,7}{4,3} and 765/1216 = {8, 5}{38, 13) = {8,7}{19, 2). A further search shows 
that these admit the further representations 5/128 = {11, 6){ 17, 16) and 765/1216 
= {11,6){19,8), where we notice the appearance of {11,6) in both expressions. 
This last repetition indicates a solution to our problem: we may take a,/bj to be the 
(i, j) entry in the array 

[ {8,7}' {4,3} {19,2} 1 
{8,5}' {13,12} {38,13} , 

{11,6}' {17,16} {19,8}J 
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whose rows (and likewise columns) are scalar multiples of one another. By transpos- 
ing the array, or interchanging each entry { p, q } with its reciprocal { p, q }', we 
obtain the reciprocal solution. In this example the two pairs of triads are 

74256 20400 15444, 9945 254592 15808, 
376200 1369368 1808800, 2808960 109725 1767150. 

Further arrays, leading to solutions in greater integers, are not infrequent. One 
which leads to a solution in smaller integers is 

{8,3}' {21,4}' {35,16}'- 
[ 8,7} {17,16} {68,57} , 
{28,11} {8,5} {19,6}J 

giving the solution 

26880 4125 33150, 30800 68000 23256, 

which is the smallest we have found of this general form. 
The search was made for ratios a2/a, with a2 < a, < 100 having several repre- 

sentations a 2/a = { p, q }{r, s } in small integers, and was then extended to other 
ratios, such as 5/128 and 765/1216, which appeared in the course of the working, as 
above, to have several such representations. Arrays giving triads appear frequently, 
but not in order of magnitude. For example, our smallest general solution above 
does not involve two rows or columns having a ratio ai/a1 with ai < aj < 100, and 
we cannot claim to have exhausted the range up to this smallest solution found. 

7. Two Triads with aja2 = b1b2. Solutions of a special form appear rather 
frequently in this search. In these, the array has a minor of the form 

[ pq} {r,s} 

{r,s}' { pq} J 
corresponding to a pair of triads which satisfy aja2 = b1b2. These are, however, 
more readily found by means of a modified search process, which we illustrate with 
an example. We choose a ratio with two convenient expressions of the form 
{pq}{r,s}; in this example, 25/91 = {3,2}{10,3}' = {8,5}'{8,7} is successful. 
From these expressions we obtain two associated ratios, here 9/28 = {3, 2}'{8, 7) = 
{10, 3}'{8, 5) and 13/64 = {3, 2}{8, 5) = {10, 3}{8, 7). We examine other represen- 
tations of these three ratios, and we find among them 25/91 = {11,4) {44;5)' and 
9/28 = {11,4}'{16, 11). These lead to the array 

{8,7} {10,3} {3,2}1 
{10,3}' {8,7}' {8,5}' 

{ 16, 11} {44,5} {11,4} 

and to the pairs of triads 

30030 147840 85995, 224224 19800 72072, 
20160 4095 7040, 2700 30576 8400. 

In solutions of this form, the relations between the { p,q} involved are more 
symmetrical than is apparent from the foregoing arrangement. We may see this by 
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writing out the expressions 

91/25 = {3,2}'{10,3} = {8,5}{8,7)' = {44,5}{11,4}', 
9/28 = {8,5}{10,3)' = {3,2}'{8,7} = {16,11}{11,4}', 

819/1408 = {16,11}{10,3} = {44,5}{8,7} = {8,5}{11,4}, 
63/22 = {44,5}{10,3)' = {16,11){8,7)' = {3,2)'{11,4). 

Each partition of these four rows into two pairs gives rise to an array of the required 
form and a reciprocal pair of solutions. In this example the two further arrays are 

[ {11,4} {8,7}' {8,5}' 1 {10,3}' {11,4}' {44,5}' 

{8.7} {11,4}' {44,5}' and {11,4} {10,3} {3,2} , 
{ 16,11} {3,2}' {10,3}'J [{16,11} {8,5} {8,7} 

and the corresponding pairs of solutions are 

9856 1575 5733, 11760 1320 3780, 
61425 384384 105600, 51480 458640 160160; 
18900 24024 6600, 28665 15840 49280, 
32032 25200 91728, 21120 38220 12285. 

The first of these is the smallest solution of this form that we have found, though 
again our search has not been exhaustive. 

Another set of relations of this form, giving three arrays and six solutions, is 

70/117 = {28,11)'{11,6) = {13,12){8,7)' = {4,3){8,5)', 
55/442 = {13,12){11,6)' = {28,11)'{8,7) = {17,16){8,5)', 
5/128 = {17,16){11,6) = {4,3){8,7) = {13,12){8,5), 

77/170 = {4,3){11,6)' = {17,16){8,7)' = {28, 11)'{8,5). 

The smallest solution obtained from this set is 

6630 825 21120, 10296 6160 13600. 

Although the same expressions for 5/128 appear in this set and in the first array of 
Section 6, the solutions do not appear to be otherwise related. Other sets that we 
have found lead only to solutions in still greater integers. 

Our first solutions, obtained in Section 5 from solutions of { m, n = 

{ p, q ) { r, s ), can now be seen to be doubly special. The corresponding array has 
two minors of the form 

Emen} {c, d } 
{cd}' {m,n}'J 

and one of the form 

Emn} {r,s} 1 
{p,q} {m,n}J' 

so it has the form 

m, n { cd} {rs}1 
{cd}' {m,n}' {elf}' I. 
{pq} {ejf} {m,n} 
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For the simplest numerical solution given in Section 5 (with the triads reordered), 
the array is 

{4,1} {15,2} {14,1}1 
{15,2}' {4,1}' {12,5}' . 
{13,8} {12,5} {4,1} 

Our searches have shown that this is the smallest solution of this doubly special 
form. It is probably the smallest of all solutions, but our searches for solutions of 
more general form have not been exhaustive, and we cannot be sure of this. 

8. A Triad and a Tetrad. Many pairs of otherwise unrelated arrays are found to 
share a common 2 X 2 minor (for example, those involving the ratio 5/128 men- 
tioned above). The frequency of these invites investigation whether pairs of arrays 
exist sharing a 3 X 2 minor. Any such pair would combine into a 3 x 4 array and 
would lead to one of the triads being extended to a tetrad. Our searches have found 
one such example. The simple ratio 9/5 has the representations 9/5 = {2,1){3,2)' 
= {20,13}'{52,25), from which we find the associated ratio 693/2080 which has 
numerous representations including 693/2080 = {2,1}{20,13) = {3,2}{52,25)= 
{28, 5}{26, 23) = {36, 13}{46, 35). The last three of these lead to the array 

{3,2} {52,25}' {40,17}' {69,56}1 
{28,5} {26,23}' {51,44}' {49,16} 
{36,13} {46,35}' {68,49}' {16,9} 

and to the triads plus tetrads 
9282000 60386040 26822600, 

22276800 7422030 8947575 44142336 
and 

101754576 15640800 35212320, 
42397740 127254400 105557760 21396375. 

We cannot comment on the frequency of such arrays or on the prospects for finding 
even larger arrays from 3 X 5 or 4 X 4 upwards. Any example of a 4 x 4 array 
would lead to sets of seventeen points at integer distances with N = 8. 
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